A Stereospecific Racemization Catalyst for Amino Acid¹⁾

Kazuhiro Hirota and Yoshiharu Izumi Division of Organic Chemistry, Institute for Protein Research, Osaka University, Kita-ku, Osaka (Receied May 7, 1971)

It is known that pyridoxal, salicylaldehyde, o- or p-nitrosophenol, and aurintricarboxylic acid catalyze²⁻⁶⁾ non-enzymatically, in alkaline media, the racemization of optically-active amino acid in the presence of a metal ion. These reactions involve the formation of the chelate compounds of a Schiff base, which compounds promote the release of the proton at the α -carbon of the amino acid and the racemization of the amino acid. A possible chelate structure in p-nitrosophenol (p-quinoneoxime), as an example, is shown in I.

Therefore, when the optically-active asymmetric structure is introduced to the catalyst, it could bring about differences in the stabilities or in the rates of the formation of these chelates with a metal ion between L- and D-amino acids. Those differences could appear as differences in the racemization rates between L- and D-amino acids. Therefore, we wish to report here the first observation of the stereospecific racemization reaction for amino acid with the hindered biphenyl, (S)-2'-nitro-2-hydroxy-5-nitroso-6,6'-dimethyl-biphenyl(II).⁷⁾ The racemization activities of the catalyst for L- and D-alanine respectively were studied in the presence of the cupric ion.

The procedure for the racemization reaction was as

ollows; the reaction mixtures containing L- or Dalanine (0.5 mmol), cupric sulfate pentahydrate (0.05 mmol), and the catalyst (II) (0.0125 mmol) were adjusted to pH 10 with sodium hydroxide to make a total volume of 0.5 ml with water, and then the mixture was shaken in a sealed tube at 31° or 40°C. After the reaction, 6 N hydrochloric acid (0.5 ml) was added to stop the racemization reaction. The determination of the ratio of L- and D-alanines was performed as follows; the reaction mixtures were centrifuged to precipitate the used catalyst, and the supernatants were dried up. After the residues had been converted into l-menthyl D- and L-trifluoroacetylalaninates, the ratio of L- and D-alanines was determined by means of gas chromatography. Careful measurements, compared with the calibrated curve, led us to an estimated error of $\pm 0.5\%$.

The catalytic activities for L- and D-alanines are compared in Table 1 in terms of the contents of the racemized D- and L-alanines and the difference between the two. Though the racemic catalyst, of course, showed no difference in the catalytic activities between Land D-alanines, II possessed some stronger activities for L-alanine than for D-alanine. The difference in the catalytic activity lay in the range from 3.0 to 5.0% in the contents of L- and D-alanines racemized from the D- and L-alanines substrates respectively. Such a catalytic property may serve as a model for the high stereospecificities often observed in the interactions of metallo-enzymes and their substrates. A stereochemical relationship between the catalyst and substrate will be discussed in a presentation of a molecular model in This Bulletin in the near future.

Table 1. Racemization activity of the catalyst

Configuration of catalyst	Substrate	Exp. 1.		Exp. 2		Exp. 3	
		D- or L-ala. content (%)b)	Difference ^{c)}	D- or L-ala. content (%)	Difference	D- or L-ala. content (%)	Difference
Racemic	L-alanine D-alanine	D: 20.4 L: 19.8	0.6	D: 28.5 L: 29.0	0.5	D:34.0 L:34.5	0.5
S	L-alanine D-alanine	D: 20.1 L: 16.9	3.2	D: 26.2 L: 21.2	5.0	D: 29.5 L: 26.5	3.0

Reaction mixture (0.5 ml) containing 0.5 mmol alanine, 0.05 mmol CuSO₄·5H₂O and 0.0125 mmol catalyst (II) was shaken at pH 10.0.

a) Racemization conditions were as follows:

Exp. 1: at $31^{\circ}C$ for $162 \, hr$. Exp. 2: at $31^{\circ}C$ for $168 \, hr$. Exp. 3: at $40^{\circ}C$ for $72 \, hr$.

b) Content of D- or L-alanine after the racemization reaction.

c) Difference between contents of L- and D-alanines racemized from D- and L-alanines, respectively.

¹⁾ Presented at the 24th Annual Meeting of the Chemical Society of Japan, Osaka, April, 1971.

J. Olivard, D. E. Metzler, and E. E. Snell, J. Biol. Chem. 199, 669 (1952).

³⁾ K. Ohno, I. Sasaji, and M. Hara, Japan. Pat. 295110.

⁴⁾ K. Toi, Y. Izumi, and S. Akabori, This Bulletin, 35, 1422 (1962).

⁵⁾ K. Hirota, and Y. Izumi, ibid., 40, 178 (1967).

⁶⁾ K. Hirota, K. Miyamoto, and Y. Izumi, *ibid.*, **40**, 182 (1967).

⁷⁾ II was derived from (S)-2'-nitro-2-amino-6,6'-dimethyl-biphenyl; its diazonium salt was hydrolyzed to the phenol derivative, and then treated with sodium nitrite. The method will be reported in detail in the near future.